Note

¹³C-N.m.r studies of a natural immunoadjuvant, peptidoglycan monomer and related compounds

BRANIMIR KLAIĆ

Tracer Laboratory, Department of Organic Chemistry and Biochemistry, "Rugjer Bošković" Institute, 41001 Zagreb (Yugoslavia)

(Received February 8th, 1982; accepted for publication, April 16th, 1982)

Peptidoglycans, which are common constituents of bacterial cell-walls, elicit a variety of biological responses in non-bacterial systems¹. The natural biopolymer and synthetic analogues of low molecular weight exhibit marked immunomodulating properties²⁻⁵.

The peptidoglycan monomer used in this work and characterised⁶ as [2-acetamido-4-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-2-deoxy-3-O-(D-ethyl-1-carbonyl)-D-glucopyranose]-L-alanyl-D-isoglutaminyl-[(L)-meso-diaminopimeloyl-(L)-D-alanyl-D-alanine] (1) was obtained by lysozyme digestion of linear, non-cross-linked, peptidoglycan polymer-chains isolated from culture fluids of penicillin-treated *Brevibacterium divaricatum*^{6,7}.

L-Alanyl-D-isoglutaminyl-[(L)-meso-diaminopimeloyl-(L)-D-alanyl-D-alanine] (2) and 2-acetamido-4-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-3-O-[1-(S)-carboxyethyl]-2-deoxy-D-glucopyranose (3) were obtained from 1 by hydrolysis with N-acetylmuramoyl-L-alanine amidase⁸.

A preliminary ¹³C-n.m.r. investigation of an N-acetylmuramoyl-dipeptide has appeared ⁹, but there are no data on larger peptidoglycan fragments. We now report

NOTE 321

on the assignment of the ¹³C resonances for 1-3. The relevant data are included in Table I, together with those for the model compounds D,L-diaminopimelic acid (4), 2-acetamido-2-deoxy-D-glucopyranose (5), 2-acetamido-3-O-[1-(S)-carboxyethyl]-2-deoxy-D-glucopyranose (6, N-acetylmuramic acid), N-acetylmuramoyl-L-alanine (7), N-acetylmuramoyl-L-alanyl-D-glutamic acid (8), and N-acetylmuramoyl-L-alanyl-D-isoglutamine (9).

The data for 5 accord with literature values^{9,11}, and comparison with those for 6 revealed a downfield shift for the C-3 signal of 6, with respect to that of 5 (8.8 and 8.9 p.p.m. for the α and β anomer, respectively), due to the carboxyethyl substituent.

For the disaccharide 3, the signals of the carbons involved in the linkage were shifted to lower field, compared with those for the constituent monosaccharides, *i.e.*, 6.4 p.p.m. for C-4 of N-acetylmuramic acid, and 5.3 p.p.m. for C-1 of 2-acetamido-2-deoxy-D-glucopyranose. Similar shielding effects in disaccharides have been reported for α -cellobiose¹² and for 6-aminohexyl glycosides of O- β -D-galactopyranosyl-2-acetamido-2-deoxy- β -D-glucopyranose¹³. A downfield shift (2.1 p.p.m.) with respect to free 6 was also observed for the carboxyl signal of the N-acetylmuramic acid moiety in 3. The chemical shifts of C-2,3,5 in this moiety suggest the preponderance of the α configuration; on the basis of signal intensities, an $\alpha\beta$ -ratio of 3:1 was determined.

The assignment of the signals of the pentapeptide 2 was based on the data available for 4, and on literature data^{14,15} for free and peptide-bound alanine, glutamic acid, and isoglutamine.

Whereas 4 gave only four ¹³C resonances, the signals of all the seven carbons were resolved in the α,α -diaminopimeloyl moiety of 2, which is non-symmetrically substituted at the L-chiral centre only. This substitution caused upfield shifts for C- α (1.6 p.p.m.), C- α ' (unsubstituted, 1.5 p.p.m.), and α -CO (1.0 p.p.m.), but a downfield shift (0.3 p.p.m.) for α '-CO.

In comparison with the free amino acid, the alanine residues in 2 showed downfield shifts for the signals for $C-\alpha$ (1.2 p.p.m. for C-terminal, and 0.6 p.p.m. for the other two alanine residues), and upfield shifts for $C-\beta$ (1.0 p.p.m. for C-terminal, and 1.3 p.p.m. for the other two alanine residues). The carbonyl signals were shifted 0.9 p.p.m. for N-terminal alanine and 2.2 p.p.m. for peptide-bound alanine, both to higher field; that of C-terminal alanine remained unchanged.

Comparison of the ¹³C data for **6** with those for synthetic N-acetylmuramoyl-L-alanine (7), N-acetylmuramoyl-L-alanyl-D-glutamic acid⁹ (8), and N-acetylmuramoyl-L-alanyl-D-isoglutamine⁹ (9) revealed that the lactylamide bond affected the signal of the carboxyethyl residue: upfield shifts for the carbonyl (5.15 and 4.7 p.p.m. for α - and β -D-N-acetylmuramoyl, respectively), and downfield shifts for the C- α signals (1.0 and 1.3 p.p.m.) for α - and β -D-N-acetylmuramoyl, respectively).

The ¹³C resonances associated with the pentapeptide moiety in 1 were not more than 0.5 p.p.m. apart from those in free 2. In both 1 and 2, the second member of the peptide chain was shown to be isoglutamine by comparing the respective C- γ and δ -carbonyl resonances with those for synthetic 8 and 9.

TABLE I 13C-n.m.r. data for compounds 1–9ª

						1				i				
Assignment	Compound	рип												
	-	7	က	.	5α	5β	6 α	<i>θ</i> 9	7α	η.	8g	8β	9 a	96
2-Acetamido-2-deoxy-D-glucosyl	-deoxy-D-gl		residue	I	!								<u>.</u>	
5	100.4		100.3		90.6	95.0								
C-2	56.05		56.3		54.1	56.8								
C-3	73.6		73.6		70.8	73.9								
C-4	70.45		70.5		70.2	70.0								
Ç-Ş	75.35		75.7		71.6	76.0								
C-6	61.25		61.4		60.7	60.7								
CH_3CO	173.5		174.54		174.4	174.7								
CH_3CO	22.3		22.1		22.0	22.3								
N-Acetylmura,	moyl residue	e e												
<u>:</u>	β 95.1		β 95.4				8.06	94.9	91.0	94.95	0.16	94.95	0.16	94.9
	3 90.2		α 89.9											
C-2	53.7		54.7				53.6	57.85	53.7	57.85	53.7	56.15	53.7	56.1
C-3	79.55		78.9				9.6	82.8	9.6/	82.5	9.62	82.45	79.55	82.5
C-4	76.35		76.3				6.69	6.69	69.1	6.89	69.1	8.89	0.69	6.89
C-5	71.2		71.3				71.7	75.8	71.6	75.8	71.5	75.8	71.5	75.75
C-6	59.9		59.7				9.09	9.09	8.09	8.09	60.55	60.7	60.55	60.7
CH_3CO	174.0		174.44				174.2	174.2	173.9	174.2	173.9	174.2	173.9	174.2
CH_3CO	22.2		22.1				22.1	22.1	22.1	22.3	22.0	22.3	22.0	22.4
СН	77.45		77.4				76.9	6.9/	77.9	78.2	77.75	78.1	7.77	78.0
CH ₃ 18.4	18.4		18.5				18.5	18.5	18.6	18.6	18.7	18.7	18.65	18.65
8	174.90		182.1				180.0	180.0	174.85	175.3	174.8	175.4	174.85	175,755

49.6 49.6 49.65 16.9 16.9 16.5 175.7 175.7 175.8°	174.8 174.8 175.8° 175.8' 53.6 53.6 52.7 52.7 26.0 26.0 26.3 26.3 30.1 30.1 31.1 31.1 177.0 177.0 175.85° 175.855			
49.6 49.6 16.5 16.5 175.6 175.6				
	o,	174.5 54.5 30.25 20.8 30.25 54.5		
49.2 16.8 174.8	ninyl residue 173.5 53.7 27.0 31.3	173.5 52.9 30.4 20.7 30.5 53.0 174.8	49.2 16.8 173.5	49.5 17.4 175.5
49.6 16.8 174.6	isoglutam, 175.2° 53.7 27.15 31.55 175.7	eloyl 173.5° 52.75 30.6 20.75 30.7 52.75 174.9°	49.6 16.75 173.4 ^b	49.9 17.7 175.7e
L-Alanyl residue CHα CHsβ CO	D-Glutamyl or D-isoglutaminyl res CO 175.2° 173.5 CH α 53.7 53.7 CH $_2\beta$ 27.15 27.0 CH $_2\gamma$ 31.55 31.3 CO δ 175.7 175.5	D ₁ Diaminopimeloyl CO 173.5 CHα 52.7 CH2β CH2β CH2γ CH2β CH3β CCHαβ	D-Alanyl residue CHα CH3β CO	D-Alanyl residue CHα CH3β CO

^aChemical shifts (δ values) in p.p.m. from tetramethylsilane; δ (Me₄Si) = δ (1,4-dioxane) + 66.6. ^{b-f}Assignments may be interchanged.

324 NOTE

An $\alpha\beta$ -ratio of 2:1 was indicated for the muramoyl residue of 1, which accords with literature reports of for *N*-acetylmuramoyl-dipeptides.

Thus, the 13 C-n.m.r. data for 1 corroborate the structure determined by chemical methods 16 , particularly with regard to the postulated $(1\rightarrow4)$ - β -D linkage between 2-acetamido-2-deoxy-D-glucopyranose and N-acetylmuramic acid. This linkage has also been found in naturally occurring, polymeric peptidoglycans susceptible to lysozyme hydrolysis. The configuration at the reducing end of 1 and 3 (mainly α), tentatively assigned on the basis of the present data, may arise by mutarotation following enzymic action.

EXPERIMENTAL

 13 C-N.m.r. spectra were recorded with a JEOL FX 90 Q Fourier-transform spectrometer operating at 22.5 MHz for 0.1M solutions in 99.75% D_2 O at room temperature in 5-mm o.d. tubes. The sweep width used was 5200 Hz, the pulse width was 5 μ s (90° pulse), the acquisition time was 2 s, and the digital resolution was 0.056 p.p.m. Chemical shifts were measured (accuracy of the chemical shift, ± 0.1 p.p.m.) relative to that of internal 1,4-dioxane, set at 66.6 p.p.m. downfield of that of Me_4Si .

ACKNOWLEDGMENTS

We thank Dr. J. Tomašič for samples 1–3, Mr. M. Pongračić for samples 7–9, Mrs. B. Metelko and Mrs. Brozinčević for recording the ¹³C-n.m.r. spectra, and Drs. D. Keglević, J. Tomašić, and S. Tomić for helpful discussions.

REFERENCES

- 1 B. HEIMER, Z. Immun. Forsch., 149 (1975) 245-257.
- 2 A. Adam, R. Ciorbaru, F. Ellouz, J. F. Petit, and E. Lederer, *Biochem. Biophys. Res. Commun.*, 56 (1974) 561–567.
- 3 S. KOTANI, Y. WATANABE, T. SHIMONO, T. NARITA, K. KATO, D. E. S. STEWART-TULL, F. KINOSHITA, K. YUKOGAWA, S. KAWATA, T. SHIBA, S. KUSUMOTO, AND Y. TARUMI, Z. Immun. Forsch., 149 (1975) 302–319.
- 4 L. CHEDID, F. PARANT, P. LEFRANCIER, J. CHOAY, AND E. LEDERER, Proc. Natl. Acad. Sci. U.S.A., 74 (1977) 2089–2093.
- 5 I. Hršak, J. Tomašić, K. Pavelić, and Z. Valinger, Z. Immun. Forsch., 155 (1979) 312-318.
- 6 D. KEGLEVIĆ, B. LADEŠIĆ, J. TOMAŠIĆ, Z. VALINGER, AND R. NAUMSKI, Biochim. Biophys. Acta, 585 (1979) 273–281.
- 7 D. KEGLEVIĆ, B. LADEŠIĆ, O. HADŽIJA, J. TOMAŠIĆ, Z. VALINGER, M. POKORNY, AND R. NAUMSKI, Eur. J. Biochem., 42 (1974) 389–400.
- 8 Z. Valinger, B. Ladešić, and J. Tomašić, Biochim. Biophys. Acta, 701 (1982) 63-71.
- 9 T. D. J. HALLS, M. S. RAJU, E. WENKERT, M. ZUBER, P. LEFRANCIER, AND E. LEDERER, Carbohydr. Res., 81 (1980) 173–176.
- 10 S. Kusumoto, Y. Tarumi, K. Ikenaka, and T. Shiba, Bull. Chem. Soc. Jpn., 49 (1976) 533-539.
- 11 S. J. Perkins, L. N. Johnson, D. C. Phillips, and R. A. Dwek, Carbohydr. Res., 59 (1977) 19-34.

NOTE 325

12 T. USUI, N. YAMAOKA, K. MATSUDA, K. TUZIMURA, H. SUGIYAMA, AND S. SETO, *J. Chem. Soc.*, *Perkin Trans. 1*, (1973) 2425–2432.

- 13 J. VERNON AND Y. C. LEE, Tetrahedron Lett., (1981) 1067-1070, and references therein.
- 14 C. Grathwohl and K. Wüthrich, J. Magn. Reson., 13 (1974) 217-225.
- 15 W. Voelter, G. Jung, E. Breitmaier, and E. Bayer, Z. Naturforsch., 26 (1971) 213-222.
- 16 K. H. SCHLEIFER AND O. KANDLER, Bacteriol. Rev., 36 (1972) 407-477.